3.431 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=117 \[ \frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}} \]

[Out]

1/2*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)+1/4*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2
^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {4264, 3810, 3808, 206} \[ \frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

(ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqrt
[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) + Sin[c + d*x]/(2*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3810

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*d*C
ot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[(d*(m + 1))/(b*(2*m +
1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && E
qQ[a^2 - b^2, 0] && EqQ[m + n, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\\ &=\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}+\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.87, size = 248, normalized size = 2.12 \[ \frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \left (\sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+\cos (2 (c+d x)) \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)-\sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )+2 (\cos (c+d x)+1) \sin ^{-1}\left (\sqrt {1-\sec (c+d x)}\right )+2 (\cos (c+d x)+1) \sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )-\sqrt {2} \cos (c+d x) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )\right )}{4 d \sqrt {1-\sec (c+d x)} (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

(Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(5/2)*(-(Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]])
 - Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Cos[c + d*x] + 2*ArcSin[Sqrt[1 - Sec[c
+ d*x]]]*(1 + Cos[c + d*x]) + 2*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Cos[c + d*x]) + Sqrt[1 - Sec[c + d*x]]*Sec[c +
 d*x]^(3/2) + Cos[2*(c + d*x)]*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2))*Sin[c + d*x])/(4*d*Sqrt[1 - Sec[c +
d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 338, normalized size = 2.89 \[ \left [\frac {\sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) - 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a
*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2
*cos(d*x + c) + 1)) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*
x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*arctan(
sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) - 2*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^
2*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.99, size = 136, normalized size = 1.16 \[ \frac {\left (\arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )-1\right )}{4 d \sin \left (d x +c \right )^{3} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/4/d*(arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+(-2/(1
+cos(d*x+c)))^(1/2))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^(1/2)*(-2/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)
^3*(cos(d*x+c)^2-1)/a^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________